If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-120x-13200=0
a = 1; b = -120; c = -13200;
Δ = b2-4ac
Δ = -1202-4·1·(-13200)
Δ = 67200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{67200}=\sqrt{1600*42}=\sqrt{1600}*\sqrt{42}=40\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-40\sqrt{42}}{2*1}=\frac{120-40\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+40\sqrt{42}}{2*1}=\frac{120+40\sqrt{42}}{2} $
| 2(3h-1)=22 | | 10+8x*5=10+8x*5 | | 13=4-n+4n | | -32a^2+51a-18=0 | | 1-2n+3=14 | | 100=x-700/700•100 | | 3x+9-x=21-8x-12 | | 47=5u-13 | | .50(z-2)=-0.11(z+3) | | 0.65x+0.2x=x-7.5 | | 131.59=2.55h+72.94 | | -0.16+0.48n=-0.2992 | | 0.65x+0.2x=-7.5 | | 8=(x)(10)/x+10 | | 3(2x-4)=2(x+4) | | 95=11^x | | 3k−1=7k+2 | | 6(3x-11)-4(3x-1)=8x=12(4-5x) | | 2^4t=7 | | 8=x(10)/x+10 | | -0.75+0.81x=-0.2316 | | 8x^2+55x-71=0 | | 4(y+5)=6y+12 | | 2^4t-7=0 | | 2/5=15/x | | 7+3(2g-6)=-39 | | 2(3x3)+3x-7=11 | | 8(x+2)=240 | | (2x+1)+x=(x+1)+(x+2)+(x-2) | | 4=v-2+5v | | 4(1-2d)=8d-4 | | X+6=-(5x+7) |